CUDA.jl 5.2 and 5.3: Maintenance releases


Tim Besard

CUDA.jl 5.2 and 5.3 are two minor release of CUDA.jl that mostly focus on bug fixes and minor improvements, but also come with a number of interesting new features. This blog post summarizes the changes in these releases.

Profiler improvements

CUDA.jl 5.1 introduced a new native profiler, which can be used to profile Julia GPU applications without having to use NSight Systems or other external tools. The tool has seen continued development, mostly improving its robustness, but CUDA.jl now also provides a @bprofile equivalent that runs your application multiple times and reports on the time distribution of individual events:

julia> CUDA.@bprofile CuArray([1]) .+ 1
Profiler ran for 1.0 s, capturing 1427349 events.

Host-side activity: calling CUDA APIs took 792.95 ms (79.29% of the trace)
┌──────────┬────────────┬────────┬───────────────────────────────────────┬─────────────────────────┐
│ Time (%) │ Total time │  Calls │ Time distribution                     │ Name                    │
├──────────┼────────────┼────────┼───────────────────────────────────────┼─────────────────────────┤
│   19.27% │  192.67 ms │ 109796 │   1.75 µs ± 10.19  (  0.95 ‥ 1279.83) │ cuMemAllocFromPoolAsync │
│   17.08% │   170.8 ms │  54898 │   3.11 µs ± 0.27   (  2.15 ‥ 23.84)   │ cuLaunchKernel          │
│   16.77% │  167.67 ms │  54898 │   3.05 µs ± 0.24   (  0.48 ‥ 16.69)   │ cuCtxSynchronize        │
│   14.11% │  141.12 ms │  54898 │   2.57 µs ± 0.79   (  1.67 ‥ 70.57)   │ cuMemcpyHtoDAsync       │
│    1.70% │   17.04 ms │  54898 │ 310.36 ns ± 132.89 (238.42 ‥ 5483.63) │ cuStreamSynchronize     │
└──────────┴────────────┴────────┴───────────────────────────────────────┴─────────────────────────┘

Device-side activity: GPU was busy for 87.38 ms (8.74% of the trace)
┌──────────┬────────────┬───────┬───────────────────────────────────────┬────────────────────┐
│ Time (%) │ Total time │ Calls │ Time distribution                     │ Name               │
├──────────┼────────────┼───────┼───────────────────────────────────────┼────────────────────┤
│    6.66% │   66.61 ms │ 54898 │   1.21 µs ± 0.16   (  0.95 ‥ 1.67)    │ kernel             │
│    2.08% │   20.77 ms │ 54898 │ 378.42 ns ± 147.66 (238.42 ‥ 1192.09) │ [copy to device]   │
└──────────┴────────────┴───────┴───────────────────────────────────────┴────────────────────┘

NVTX ranges:
┌──────────┬────────────┬───────┬────────────────────────────────────────┬─────────────────────┐
│ Time (%) │ Total time │ Calls │ Time distribution                      │ Name                │
├──────────┼────────────┼───────┼────────────────────────────────────────┼─────────────────────┤
│   98.99% │  989.94 ms │ 54898 │  18.03 µs ± 49.88  ( 15.26 ‥ 10731.22) │ @bprofile.iteration │
└──────────┴────────────┴───────┴────────────────────────────────────────┴─────────────────────┘

By default, CUDA.@bprofile runs the application for 1 second, but this can be adjusted using the time keyword argument.

Display of the time distribution isn't limited to CUDA.@bprofile, and will also be used by CUDA.@profile when any operation is called more than once. For example, with the broadcasting example from above we allocate both the input CuArray and the broadcast result, which results in two calls to the allocator:

julia> CUDA.@profile CuArray([1]) .+ 1

Host-side activity:
┌──────────┬────────────┬───────┬─────────────────────────────────────┬─────────────────────────┐
│ Time (%) │ Total time │ Calls │ Time distribution                   │ Name                    │
├──────────┼────────────┼───────┼─────────────────────────────────────┼─────────────────────────┤
│   99.92% │   99.42 ms │     1 │                                     │ cuMemcpyHtoDAsync       │
│    0.02% │   21.22 µs │     2 │  10.61 µs ± 6.57   (  5.96 ‥ 15.26) │ cuMemAllocFromPoolAsync │
│    0.02% │   17.88 µs │     1 │                                     │ cuLaunchKernel          │
│    0.00% │  953.67 ns │     1 │                                     │ cuStreamSynchronize     │
└──────────┴────────────┴───────┴─────────────────────────────────────┴─────────────────────────┘

It is also not required anymore to specify external=true when using CUDA.@profile in combination with a tool like NSight Systems, as CUDA.jl will automatically detect the presence of an external profiler:

shell> nsys launch julia

# warm-up
julia> CuArray([1]).+1
1-element CuArray{Int64, 1, CUDA.Mem.DeviceBuffer}:
 2

julia> CUDA.@profile CuArray([1]).+1
[ Info: This Julia session is already being profiled; defaulting to the external profiler.
Capture range started in the application.
Capture range ended in the application.
Generating '/tmp/nsys-report-c42f.qdstrm'
[1/1] [========================100%] report1.nsys-rep

In case that detection fails, the external keyword argument remains available (but do file an issue).

Kernel launch debugging

A common issue with CUDA programming is that kernel launches may fail when exhausting certain resources, such as shared memory or registers. This typically results in a cryptic error message, but CUDA.jl will now try to diagnose launch failures and provide a more helpful error message, as suggested by @simonbyrne:

For example, when using more parameter memory than allowed by the architecture:

julia> kernel(x) = nothing
julia> @cuda kernel(ntuple(_->UInt64(1), 2^13))
ERROR: Kernel invocation uses too much parameter memory.
64.016 KiB exceeds the 31.996 KiB limit imposed by sm_89 / PTX v8.2.

Or when using an invalid launch configuration, violating a device limit:

julia> @cuda threads=2000 identity(nothing)
ERROR: Number of threads in x-dimension exceeds device limit (2000 > 1024).
caused by: CUDA error: invalid argument (code 1, ERROR_INVALID_VALUE)

We also diagnose launch failures that involve kernel-specific limits, such as exceeding the number of threads that are allowed in a block (e.g., because of register use):

julia> @cuda threads=1024 heavy_kernel()
ERROR: Number of threads per block exceeds kernel limit (1024 > 512).
caused by: CUDA error: invalid argument (code 1, ERROR_INVALID_VALUE)

Sorting improvements

Thanks to @xaellison, our bitonic sorting implementation now supports sorting specific dimensions, making it possible to implement sortperm for multi-dimensional arrays:

julia> A = cu([8 7; 5 6])
2×2 CuArray{Int64, 2, Mem.DeviceBuffer}:
 8  7
 5  6

julia> sortperm(A, dims = 1)
2×2 CuArray{Int64, 2, Mem.DeviceBuffer}:
 2  4
 1  3

julia> sortperm(A, dims = 2)
2×2 CuArray{Int64, 2, Mem.DeviceBuffer}:
 3  1
 2  4

The bitonic kernel is now used for all sorting operations, in favor of the often slower quicksort implementation:

# before (quicksort)
julia> @btime CUDA.@sync sort($(CUDA.rand(1024, 1024)); dims=1)
  2.760 ms (30 allocations: 1.02 KiB)

# after (bitonic sort)
julia> @btime CUDA.@sync sort($(CUDA.rand(1024, 1024)); dims=1)
  246.386 μs (567 allocations: 13.66 KiB)

# reference CPU time
julia> @btime sort($(rand(Float32, 1024, 1024)); dims=1)
  4.795 ms (1030 allocations: 5.07 MiB)

Unified memory fixes

CUDA.jl 5.1 greatly improved support for unified memory, and this has continued in CUDA.jl 5.2 and 5.3. Most notably, when broadcasting CuArrays we now correctly preserve the memory type of the input arrays. This means that if you broadcast a CuArray that is allocated as unified memory, the result will also be allocated as unified memory. In case of a conflict, e.g. broadcasting a unified CuArray with one backed by device memory, we will prefer unified memory:

julia> cu([1]; host=true) .+ 1
1-element CuArray{Int64, 1, Mem.HostBuffer}:
 2

julia> cu([1]; host=true) .+ cu([2]; device=true)
1-element CuArray{Int64, 1, Mem.UnifiedBuffer}:
 3

Software updates

Finally, we also did routine updates of the software stack, support the latest and greatest by NVIDIA. This includes support for CUDA 12.4 (Update 1), cuDNN 9, and cuTENSOR 2.0. This latest release of cuTENSOR is noteworthy as it revamps the API in a backwards-incompatible way, and CUDA.jl has opted to follow this change. For more details, refer to the cuTENSOR 2 migration guide by NVIDIA.

Of course, cuTENSOR.jl also provides a high-level Julia API which has been mostly unaffected by these changes:

using CUDA
A = CUDA.rand(7, 8, 3, 2)
B = CUDA.rand(3, 2, 2, 8)
C = CUDA.rand(3, 3, 7, 2)

using cuTENSOR
tA = CuTensor(A, ['a', 'f', 'b', 'e'])
tB = CuTensor(B, ['c', 'e', 'd', 'f'])
tC = CuTensor(C, ['b', 'c', 'a', 'd'])

using LinearAlgebra
mul!(tC, tA, tB)

This API is still quite underdeveloped, so if you are a user of cuTENSOR.jl and have to adapt to the new API, now is a good time to consider improving the high-level interface instead!

Future releases

The next release of CUDA.jl is gearing up to be a much larger release, with significant changes to both the API and internals of the package. Although the intent is to keep these changes non-breaking, it is always possible that some code will be affected in unexpected ways, so we encourage users to test the upcoming release by simply running ] add CUDA#master and report any issues.